Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
JAMA Cardiol ; 9(5): 418-427, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477908

RESUMO

Importance: Epicardial and pericardial adipose tissue (EPAT) has been associated with cardiovascular diseases such as atrial fibrillation or flutter (AF) and coronary artery disease (CAD), but studies have been limited in sample size or drawn from selected populations. It has been suggested that the association between EPAT and cardiovascular disease could be mediated by local or paracrine effects. Objective: To evaluate the association of EPAT with prevalent and incident cardiovascular disease and to elucidate the genetic basis of EPAT in a large population cohort. Design, Setting, and Participants: A deep learning model was trained to quantify EPAT area from 4-chamber magnetic resonance images using semantic segmentation. Cross-sectional and prospective cardiovascular disease associations were evaluated, controlling for sex and age. Prospective associations were additionally controlled for abdominal visceral adipose tissue (VAT) volumes. A genome-wide association study was performed, and a polygenic score (PGS) for EPAT was examined in independent FinnGen cohort study participants. Data analyses were conducted from March 2022 to December 2023. Exposures: The primary exposures were magnetic resonance imaging-derived continuous measurements of epicardial and pericardial adipose tissue area and visceral adipose tissue volume. Main Outcomes and Measures: Prevalent and incident CAD, AF, heart failure (HF), stroke, and type 2 diabetes (T2D). Results: After exclusions, this study included 44 475 participants (mean [SD] age, 64.1 [7.7] years; 22 972 female [51.7%]) from the UK Biobank. Cross-sectional and prospective cardiovascular disease associations were evaluated for a mean (SD) of 3.2 (1.5) years of follow-up. Prospective associations were additionally controlled for abdominal VAT volumes for 38 527 participants. A PGS for EPAT was examined in 453 733 independent FinnGen cohort study participants. EPAT was positively associated with male sex (ß = +0.78 SD in EPAT; P < 3 × 10-324), age (Pearson r = 0.15; P = 9.3 × 10-229), body mass index (Pearson r = 0.47; P < 3 × 10-324), and VAT (Pearson r = 0.72; P < 3 × 10-324). EPAT was more elevated in prevalent HF (ß = +0.46 SD units) and T2D (ß = +0.56) than in CAD (ß = +0.23) or AF (ß = +0.18). EPAT was associated with incident HF (hazard ratio [HR], 1.29 per +1 SD in EPAT; 95% CI, 1.17-1.43), T2D (HR, 1.63; 95% CI, 1.51-1.76), and CAD (HR, 1.19; 95% CI, 1.11-1.28). However, the associations were no longer significant when controlling for VAT. Seven genetic loci were identified for EPAT, implicating transcriptional regulators of adipocyte morphology and brown adipogenesis (EBF1, EBF2, and CEBPA) and regulators of visceral adiposity (WARS2 and TRIB2). The EPAT PGS was associated with T2D (odds ratio [OR], 1.06; 95% CI, 1.05-1.07; P =3.6 × 10-44), HF (OR, 1.05; 95% CI, 1.04-1.06; P =4.8 × 10-15), CAD (OR, 1.04; 95% CI, 1.03-1.05; P =1.4 × 10-17), AF (OR, 1.04; 95% CI, 1.03-1.06; P =7.6 × 10-12), and stroke in FinnGen (OR, 1.02; 95% CI, 1.01-1.03; P =3.5 × 10-3) per 1 SD in PGS. Conclusions and Relevance: Results of this cohort study suggest that epicardial and pericardial adiposity was associated with incident cardiovascular diseases, but this may largely reflect a metabolically unhealthy adiposity phenotype similar to abdominal visceral adiposity.


Assuntos
Adiposidade , Doenças Cardiovasculares , Pericárdio , Humanos , Pericárdio/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Adiposidade/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/epidemiologia , Estudos Transversais , Idoso , Tecido Adiposo/diagnóstico por imagem , Estudos Prospectivos , Estudo de Associação Genômica Ampla , Imageamento por Ressonância Magnética , Gordura Intra-Abdominal/diagnóstico por imagem
2.
Ecol Evol ; 14(2): e11007, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333098

RESUMO

Overharvesting is a serious threat to many fish populations. High mortality and directional selection on body size can cause evolutionary change in exploited populations via selection for a specific phenotype and a potential reduction in phenotypic diversity. Whether the loss of phenotypic diversity that accompanies directional selection impairs response to environmental stress is not known. To address this question, we exposed three zebrafish selection lines to thermal stress. Two lines had experienced directional selection for (1) large and (2) small body size, and one was (3) subject to random removal of individuals with respect to body size (i.e. line with no directional selection). Selection lines were exposed to three temperatures (elevated, 34°C; ambient, 28°C; low, 22°C) to determine the response to an environmental stressor (thermal stress). We assessed differences among selection lines in their life history (growth and reproduction), physiological traits (metabolic rate and critical thermal max) and behaviour (activity and feeding behaviour) when reared at different temperatures. Lines experiencing directional selection (i.e. size selected) showed reduced growth rate and a shift in average phenotype in response to lower or elevated thermal stress compared with fish from the random-selected line. Our data indicate that populations exposed to directional selection can have a more limited capacity to respond to thermal stress compared with fish that experience a comparable reduction in population size (but without directional selection). Future studies should aim to understand the impacts of environmental stressors on natural fish stocks.

4.
medRxiv ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37502935

RESUMO

Background: While previous studies have reported associations of pericardial adipose tissue (PAT) with cardiovascular diseases such as atrial fibrillation and coronary artery disease, they have been limited in sample size or drawn from selected populations. Additionally, the genetic determinants of PAT remain largely unknown. We aimed to evaluate the association of PAT with prevalent and incident cardiovascular disease and to elucidate the genetic basis of PAT in a large population cohort. Methods: A deep learning model was trained to quantify PAT area from four-chamber magnetic resonance images in the UK Biobank using semantic segmentation. Cross-sectional and prospective cardiovascular disease associations were evaluated, controlling for sex and age. A genome-wide association study was performed, and a polygenic score (PGS) for PAT was examined in 453,733 independent FinnGen study participants. Results: A total of 44,725 UK Biobank participants (51.7% female, mean [SD] age 64.1 [7.7] years) were included. PAT was positively associated with male sex (ß = +0.76 SD in PAT), age (r = 0.15), body mass index (BMI; r = 0.47) and waist-to-hip ratio (r = 0.55) (P < 1×10-230). PAT was more elevated in prevalent heart failure (ß = +0.46 SD units) and type 2 diabetes (ß = +0.56) than in coronary artery disease (ß = +0.22) or AF (ß = +0.18). PAT was associated with incident heart failure (HR = 1.29 per +1 SD in PAT [95% CI 1.17-1.43]) and type 2 diabetes (HR = 1.63 [1.51-1.76]) during a mean 3.2 (±1.5) years of follow-up; the associations remained significant when controlling for BMI. We identified 5 novel genetic loci for PAT and implicated transcriptional regulators of adipocyte morphology and brown adipogenesis (EBF1, EBF2 and CEBPA) and regulators of visceral adiposity (WARS2 and TRIB2). The PAT PGS was associated with T2D, heart failure, coronary artery disease and atrial fibrillation in FinnGen (ORs 1.03-1.06 per +1 SD in PGS, P < 2×10-10). Conclusions: PAT shares genetic determinants with abdominal adiposity and is an independent predictor of incident type 2 diabetes and heart failure.

5.
Gastroenterology ; 165(4): 861-873, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37453564

RESUMO

BACKGROUND & AIMS: Small intestinal neuroendocrine tumor (SI-NET) is a rare disease, but its incidence has increased over the past 4 decades. Understanding the genetic risk factors underlying SI-NETs can help in disease prevention and may provide clinically beneficial markers for diagnosis. Here the results of the largest genome-wide association study of SI-NETs performed to date with 405 cases and 614,666 controls are reported. METHODS: Samples from 307 patients with SI-NETs and 287,137 controls in the FinnGen study were used for the identification of SI-NET risk-associated genetic variants. The results were also meta-analyzed with summary statistics from the UK Biobank (n = 98 patients with SI-NET and n = 327,529 controls). RESULTS: We identified 6 genome-wide significant (P < 5 × 10-8) loci associated with SI-NET risk, of which 4 (near SEMA6A, LGR5, CDKAL1, and FERMT2) are novel and 2 (near LTA4H-ELK and in KIF16B) have been reported previously. Interestingly, the top hit (rs200138614; P = 1.80 × 10-19) was a missense variant (p.Cys712Phe) in the LGR5 gene, a bona-fide marker of adult intestinal stem cells and a potentiator of canonical WNT signaling. The association was validated in an independent Finnish collection of 70 patients with SI-NETs, as well as in the UK Biobank exome sequence data (n = 92 cases and n = 392,814 controls). Overexpression of LGR5 p.Cys712Phe in intestinal organoids abolished the ability of R-Spondin1 to support organoid growth, indicating that the mutation perturbed R-Spondin-LGR5 signaling. CONCLUSIONS: Our study is the largest genome-wide association study to date on SI-NETs and reported 4 new associated genome-wide association study loci, including a novel missense mutation (rs200138614, p.Cys712Phe) in LGR5, a canonical marker of adult intestinal stem cells.


Assuntos
Neoplasias Intestinais , Tumores Neuroendócrinos , Adulto , Humanos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Mutação de Sentido Incorreto , Estudo de Associação Genômica Ampla , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Receptores Acoplados a Proteínas G/genética , Cinesinas/genética
6.
JAMA Cardiol ; 8(7): 674-683, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285119

RESUMO

Importance: A genetic contribution to preeclampsia susceptibility has been established but is still incompletely understood. Objective: To disentangle the underlying genetic architecture of preeclampsia and preeclampsia or other maternal hypertension during pregnancy with a genome-wide association study (GWAS) of hypertensive disorders of pregnancy. Design, Setting, and Participants: This GWAS included meta-analyses in maternal preeclampsia and a combination phenotype encompassing maternal preeclampsia and preeclampsia or other maternal hypertensive disorders. Two overlapping phenotype groups were selected for examination, namely, preeclampsia and preeclampsia or other maternal hypertension during pregnancy. Data from the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC, 1990-2011), Finnish FinnGen project (1964-2019), Estonian Biobank (1997-2019), and the previously published InterPregGen consortium GWAS were combined. Individuals with preeclampsia or other maternal hypertension during pregnancy and control individuals were selected from the cohorts based on relevant International Classification of Diseases codes. Data were analyzed from July 2020 to February 2023. Exposures: The association of a genome-wide set of genetic variants and clinical risk factors was analyzed for the 2 phenotypes. Results: A total of 16 743 women with prior preeclampsia and 15 200 with preeclampsia or other maternal hypertension during pregnancy were obtained from FINNPEC, FinnGen, Estonian Biobank, and the InterPregGen consortium study (respective mean [SD] ages at diagnosis: 30.3 [5.5], 28.7 [5.6], 29.7 [7.0], and 28 [not available] years). The analysis found 19 genome-wide significant associations, 13 of which were novel. Seven of the novel loci harbor genes previously associated with blood pressure traits (NPPA, NPR3, PLCE1, TNS2, FURIN, RGL3, and PREX1). In line with this, the 2 study phenotypes showed genetic correlation with blood pressure traits. In addition, novel risk loci were identified in the proximity of genes involved in the development of placenta (PGR, TRPC6, ACTN4, and PZP), remodeling of uterine spiral arteries (NPPA, NPPB, NPR3, and ACTN4), kidney function (PLCE1, TNS2, ACTN4, and TRPC6), and maintenance of proteostasis in pregnancy serum (PZP). Conclusions and Relevance: The findings indicate that genes related to blood pressure traits are associated with preeclampsia, but many of these genes have additional pleiotropic effects on cardiometabolic, endothelial, and placental function. Furthermore, several of the associated loci have no known connection with cardiovascular disease but instead harbor genes contributing to maintenance of successful pregnancy, with dysfunctions leading to preeclampsialike symptoms.


Assuntos
Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/diagnóstico , Estudo de Associação Genômica Ampla , Canal de Cátion TRPC6/genética , Placenta , Fatores de Risco
7.
Nat Commun ; 14(1): 3453, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301908

RESUMO

Genotypes causing pregnancy loss and perinatal mortality are depleted among living individuals and are therefore difficult to find. To explore genetic causes of recessive lethality, we searched for sequence variants with deficit of homozygosity among 1.52 million individuals from six European populations. In this study, we identified 25 genes harboring protein-altering sequence variants with a strong deficit of homozygosity (10% or less of predicted homozygotes). Sequence variants in 12 of the genes cause Mendelian disease under a recessive mode of inheritance, two under a dominant mode, but variants in the remaining 11 have not been reported to cause disease. Sequence variants with a strong deficit of homozygosity are over-represented among genes essential for growth of human cell lines and genes orthologous to mouse genes known to affect viability. The function of these genes gives insight into the genetics of intrauterine lethality. We also identified 1077 genes with homozygous predicted loss-of-function genotypes not previously described, bringing the total set of genes completely knocked out in humans to 4785.


Assuntos
Proteínas , Humanos , Animais , Camundongos , Homozigoto , Genótipo , Proteínas/genética , Genes Recessivos
8.
Ecotoxicol Environ Saf ; 258: 114984, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37172406

RESUMO

Elevated concentrations of sulfate in waterways are observed due to various anthropogenic activities. Elevated levels of sulfate can have harmful effects on aquatic life in freshwaters: sulfate can cause osmotic stress or specific ion toxicity in aquatic organisms, especially in soft waters where Ca2+ and Mg2+ concentrations are low. Formerly, chronic toxicity test data in soft water have been scarce. The chronic and acute sulfate toxicity tests conducted with aquatic organisms from 10 families across various trophic levels in this study multiplied the number of tests conducted in soft freshwater conditions and enabled derivation of the species sensitivity distribution (SSD) and sulfate hazardous concentrations for soft freshwaters. The cladoceran Daphnia longispina and freshwater snail Lymnaea stagnalis were the most sensitive to sulfate among the studied species. Harmful effects on the reproduction of D. longispina were observed at 49 mg SO4 /L while growth of L. stagnalis was inhibited at 217 mg SO4 /L. Most studied organisms tolerated high sulfate concentrations: the median of chronic effective concentrations (EC10 or LC10) was 1008 mg/L for all the species tested in this study. Based on the species sensitivity distribution of the studied species the hazardous concentration for 5 % of aquatic organism (HC5) in soft waters was 117-194 mg SO4/L. Different data set combinations were used to demonstrate the data variability in SSD-based HC5 estimates. The lowest values were produced from combining biotest results from the present study and earlier literature, while the highest values were calculated from the present study only. The derived chronic no-effect concentrations (PNEC) varied between 39 and 65 mg SO4/L.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Animais , Sulfatos/toxicidade , Poluentes Químicos da Água/análise , Água Doce , Testes de Toxicidade Aguda
10.
Nature ; 613(7944): 508-518, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653562

RESUMO

Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10-11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.


Assuntos
Doença , Frequência do Gene , Fenótipo , Humanos , Pessoa de Meia-Idade , Doença/genética , Estônia , Finlândia , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Metanálise como Assunto , Reino Unido , População Branca/genética
11.
Nat Commun ; 14(1): 157, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653343

RESUMO

Otosclerosis is one of the most common causes of conductive hearing loss, affecting 0.3% of the population. It typically presents in adulthood and half of the patients have a positive family history. The pathophysiology of otosclerosis is poorly understood. A previous genome-wide association study (GWAS) identified a single association locus in an intronic region of RELN. Here, we report a meta-analysis of GWAS studies of otosclerosis in three population-based biobanks comprising 3504 cases and 861,198 controls. We identify 23 novel risk loci (p < 5 × 10-8) and report an association in RELN and three previously reported candidate gene or linkage regions (TGFB1, MEPE, and OTSC7). We demonstrate developmental stage-dependent immunostaining patterns of MEPE and RUNX2 in mouse otic capsules. In most association loci, the nearest protein-coding genes are implicated in bone remodelling, mineralization or severe skeletal disorders. We highlight multiple genes involved in transforming growth factor beta signalling for follow-up studies.


Assuntos
Estudo de Associação Genômica Ampla , Otosclerose , Animais , Camundongos , Otosclerose/genética , Bancos de Espécimes Biológicos , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença/genética
12.
Nat Commun ; 14(1): 83, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653354

RESUMO

Inflammatory and infectious upper respiratory diseases (ICD-10: J30-J39), such as diseases of the sinonasal tract, pharynx and larynx, are growing health problems yet their genomic similarity is not known. We analyze genome-wide association to eight upper respiratory diseases (61,195 cases) among 260,405 FinnGen participants, meta-analyzing diseases in four groups based on an underlying genetic correlation structure. Aiming to understand which genetic loci contribute to susceptibility to upper respiratory diseases in general and its subtypes, we detect 41 independent genome-wide significant loci, distinguishing impact on sinonasal or pharyngeal diseases, or both. Fine-mapping implicated non-synonymous variants in nine genes, including three linked to immune-related diseases. Phenome-wide analysis implicated asthma and atopic dermatitis at sinonasal disease loci, and inflammatory bowel diseases and other immune-mediated disorders at pharyngeal disease loci. Upper respiratory diseases also genetically correlated with autoimmune diseases such as rheumatoid arthritis, autoimmune hypothyroidism, and psoriasis. Finally, we associated separate gene pathways in sinonasal and pharyngeal diseases that both contribute to type 2 immunological reaction. We show shared heritability among upper respiratory diseases that extends to several immune-mediated diseases with diverse mechanisms, such as type 2 high inflammation.


Assuntos
Asma , Doenças Faríngeas , Transtornos Respiratórios , Humanos , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Loci Gênicos , Inflamação/genética , Asma/genética , Genômica , Doenças Faríngeas/genética , Polimorfismo de Nucleotídeo Único
13.
Commun Biol ; 6(1): 71, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653477

RESUMO

Varicose veins is the most common manifestation of chronic venous disease that displays female-biased incidence. To identify protein-inactivating variants that could guide identification of drug target genes for varicose veins and genetic evidence for the disease prevalence difference between the sexes, we conducted a genome-wide association study of varicose veins in Finns using the FinnGen dataset with 17,027 cases and 190,028 controls. We identified 50 associated genetic loci (P < 5.0 × 10-8) of which 29 were novel including one near ERG with female-specificity (rs2836405-G, OR[95% CI] = 1.09[1.05-1.13], P = 3.1 × 10-8). These also include two X-chromosomal (ARHGAP6 and SRPX) and two autosomal novel loci (TGFB2 and GJD3) with protein-coding lead variants enriched above 56-fold in Finns over non-Finnish non-Estonian Europeans. A low-frequency missense variant in GJD3 (p.Pro59Thr) is exclusively associated with a lower risk for varicose veins (OR = 0.62 [0.55-0.70], P = 1.0 × 10-14) in a phenome-wide scan of the FinnGen data. The absence of observed pleiotropy and its membership of the connexin gene family underlines GJD3 as a potential connexin-modulating therapeutic strategy for varicose veins. Our results provide insights into varicose veins etiopathology and highlight the power of isolated populations, including Finns, to discover genetic variants that inform therapeutic development.


Assuntos
Estudo de Associação Genômica Ampla , Varizes , Humanos , Feminino , Finlândia/epidemiologia , Varizes/epidemiologia , Varizes/genética , Doença Crônica , Conexinas/genética
14.
Nat Med ; 29(1): 209-218, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653479

RESUMO

Little is known about the genetic determinants of medication use in preventing cardiometabolic diseases. Using the Finnish nationwide drug purchase registry with follow-up since 1995, we performed genome-wide association analyses of longitudinal patterns of medication use in hyperlipidemia, hypertension and type 2 diabetes in up to 193,933 individuals (55% women) in the FinnGen study. In meta-analyses of up to 567,671 individuals combining FinnGen with the Estonian Biobank and the UK Biobank, we discovered 333 independent loci (P < 5 × 10-9) associated with medication use. Fine-mapping revealed 494 95% credible sets associated with the total number of medication purchases, changes in medication combinations or treatment discontinuation, including 46 credible sets in 40 loci not associated with the underlying treatment targets. The polygenic risk scores (PRS) for cardiometabolic risk factors were strongly associated with the medication-use behavior. A medication-use enhanced multitrait PRS for coronary artery disease matched the performance of a risk factor-based multitrait coronary artery disease PRS in an independent sample (UK Biobank, n = 343,676). In summary, we demonstrate medication-based strategies for identifying cardiometabolic risk loci and provide genome-wide tools for preventing cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Humanos , Feminino , Masculino , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Fatores de Risco , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética
15.
Nat Commun ; 13(1): 5437, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114182

RESUMO

With decades of electronic health records linked to genetic data, large biobanks provide unprecedented opportunities for systematically understanding the genetics of the natural history of complex diseases. Genome-wide survival association analysis can identify genetic variants associated with ages of onset, disease progression and lifespan. We propose an efficient and accurate frailty model approach for genome-wide survival association analysis of censored time-to-event (TTE) phenotypes by accounting for both population structure and relatedness. Our method utilizes state-of-the-art optimization strategies to reduce the computational cost. The saddlepoint approximation is used to allow for analysis of heavily censored phenotypes (>90%) and low frequency variants (down to minor allele count 20). We demonstrate the performance of our method through extensive simulation studies and analysis of five TTE phenotypes, including lifespan, with heavy censoring rates (90.9% to 99.8%) on ~400,000 UK Biobank participants with white British ancestry and ~180,000 individuals in FinnGen. We further analyzed 871 TTE phenotypes in the UK Biobank and presented the genome-wide scale phenome-wide association results with the PheWeb browser.


Assuntos
Bancos de Espécimes Biológicos , Fragilidade , Fragilidade/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Fenômica , Fenótipo
16.
Nat Med ; 28(9): 1893-1901, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36097220

RESUMO

The impact of genetic variation on overall disease burden has not been comprehensively evaluated. We introduce an approach to estimate the effect of genetic risk factors on disability-adjusted life years (DALYs; 'lost healthy life years'). We use genetic information from 735,748 individuals and consider 80 diseases. Rare variants had the highest effect on DALYs at the individual level. Among common variants, rs3798220 (LPA) had the strongest individual-level effect, with 1.18 DALYs from carrying 1 versus 0 copies. Being in the top 10% versus the bottom 90% of a polygenic score for multisite chronic pain had an effect of 3.63 DALYs. Some common variants had a population-level effect comparable to modifiable risk factors such as high sodium intake and low physical activity. Attributable DALYs vary between males and females for some genetic exposures. Genetic risk factors can explain a sizable number of healthy life years lost both at the individual and population level.


Assuntos
Carga Global da Doença , Sódio na Dieta , Feminino , Saúde Global , Nível de Saúde , Humanos , Masculino , Anos de Vida Ajustados por Qualidade de Vida , Fatores de Risco
17.
Commun Biol ; 5(1): 802, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978133

RESUMO

Cardiovascular diseases are the leading cause of premature death and disability worldwide, with both genetic and environmental determinants. While genome-wide association studies have identified multiple genetic loci associated with cardiovascular diseases, exact genes driving these associations remain mostly uncovered. Due to Finland's population history, many deleterious and high-impact variants are enriched in the Finnish population giving a possibility to find genetic associations for protein-truncating variants that likely tie the association to a gene and that would not be detected elsewhere. In a large Finnish biobank study FinnGen, we identified an association between an inframe insertion rs534125149 in MFGE8 (encoding lactadherin) and protection against coronary atherosclerosis. This variant is highly enriched in Finland, and the protective association was replicated in meta-analysis of BioBank Japan and Estonian biobank. Additionally, we identified a protective association between splice acceptor variant rs201988637 in MFGE8 and coronary atherosclerosis, independent of the rs534125149, with no significant risk-increasing associations. This variant was also associated with lower pulse pressure, pointing towards a function of MFGE8 in arterial aging also in humans in addition to previous evidence in mice. In conclusion, our results suggest that inhibiting the production of lactadherin could lower the risk for coronary heart disease substantially.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Animais , Antígenos de Superfície , Doenças Cardiovasculares/genética , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/prevenção & controle , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Proteínas do Leite/genética , Polimorfismo de Nucleotídeo Único
18.
Nat Commun ; 13(1): 3200, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680855

RESUMO

Hernias are characterized by protrusion of an organ or tissue through its surrounding cavity and often require surgical repair. In this study we identify 65,492 cases for five hernia types in the UK Biobank and perform genome-wide association study scans for these five types and two combined groups. Our results show associated variants in all scans. Inguinal hernia has the most associations and we conduct a follow-up study with 23,803 additional cases from four study groups giving 84 independently associated variants. Identified variants from all scans are collapsed into 81 independent loci. Further testing shows that 26 loci are associated with more than one hernia type, suggesting substantial overlap between the underlying genetic mechanisms. Pathway analyses identify several genes with a strong link to collagen and/or elastin (ADAMTS6, ADAMTS16, ADAMTSL3, LOX, ELN) in the vicinity of associated loci for inguinal hernia, which substantiates an essential role of connective tissue morphology.


Assuntos
Hérnia Inguinal , Colágeno/metabolismo , Seguimentos , Estudo de Associação Genômica Ampla , Hérnia Inguinal/genética , Hérnia Inguinal/cirurgia , Humanos
19.
Cell Genom ; 2(10): 100192, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36777996

RESUMO

Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)-a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA